
Functional Thinking is SOLID

How Functional Thinking behind your solutions lead to SOLID and clean code base

@chiaradiajm

@chiara-jm

@chiara-jm

https://www.linkedin.com/in/chiaradiajm/
https://github.com/chiara-jm
https://github.com/chiara-jm

What is Functional Thinking?

Functional programming

Functional programming is a programming paradigm where
programs are constructed by applying and composing
functions.

It is a declarative programming paradigm in which function
definitions are trees of expressions that map values to
other values, rather than a sequence of imperative
statements which update the running state of the program.

Source: Wikipedia

https://en.wikipedia.org/wiki/Functional_programming

What is Functional Thinking?

● Apply and compose functions

● Work with declarative expressions

● Avoiding side effects

Functional Composition

Functional Composition

Functional Composition

Functional Composition

CarUI(carId) = CarView(
 getCarSnapshot(
 getAppCarState(
 getCloudCarState(carId)
)
)
)

Functional Composition

Functional Composition

CarView(carSnapshot = carSnapshot)

Functional Composition

val carSnapshot get() =
 repository.getCarState(carId).toCarSnapshot()

val carSnapshot by viewModel.carSnapshot.collectAsState()
CarView(carSnapshot = carSnapshot)

Functional Composition

carCloud.getState(carId).toCarState()

Functional Composition

val carSnapshot by viewModel.carSnapshot.collectAsState()
CarView(carSnapshot = carSnapshot)

val carSnapshot get() =
 repository.getCarState(carId).toCarSnapshot()

carCloud.getState(carId).toCarState()

Partial Application

Partial Application

carSnapshot(carId) =
 getCarSnapshot(
 getAppCarState(
 getCloudCarState(carId)
)
)

Partial Application

val carSnapshot by viewModel.carSnapshot.collectAsState()
CarView(carSnapshot = carSnapshot)

val carSnapshot get() =
 repository.getCarState(carId).toCarSnapshot()

carCloud.getState(carId).toCarState()

Partial Application

Partial Application

● Hide implementation details

● Identify dependencies

● Dependency Injection

Partial Application

getcarSnapshot(viewModel, appCarState)

getAppCarState(repository,
cloudCarState)

getCloudCarState(carCloud, carId)

class Repository(
 private val carCloud: CarCloudApi,
) {

 fun getCarState(carId: String) =
 carCloud.getState(carId).toCarState()
}

High-Order Functions

What?

A function used as a parameter

Why?

Abstract behaviour

carSnapshot(carId) =
 getcarSnapshot(
 getAppCarState(
 getCloudCarState(carId)
)
)

carSnapshot(
 getcarSnapshot,
 getAppCarState,
 getCloudCarState ,
 carId,
) = getcarSnapshot(
 getAppCarState(
 getCloudCarState(carId)
)
)

High-Order Functions

High-Order Functions

class ViewModel(
 private val carId: String,
 private val repository: Repository,
) {

 val carSnapshot get() =
 repository.getCarState(carId).toCarSnapshot()
}

class ViewModel(
 private val carId: String,
 private val getCarState: (String) -> CarState,
) {

 val carSnapshot get() =
 getCarState(carId).toCarSnapshot()
}

class GetCarState(
 private val repository: Repository
) : (String) -> CarState {

 override fun invoke(carId: String) =
 repository .getCarState(carId)
}

class GetCarState(
 private val repository: Repository
) : (String) -> CarState by repository::getCarState

val viewModel = ViewModel(
 getCarState = repository::getCarState
)

val viewModel = ViewModel(
 getCarState = GetCarState()
)

Side Effects

Side Effects

LockButton { viewModel.lock() }

repository.lock(carId)

carCloud.lock(carId)

lock(carId)

Side Effects

val carSnapshot by viewModel.carSnapshot.collectAsState()
CarView(carSnapshot = carSnapshot)

carCloud.lock(carId)
 .onSuccess { publishCarState() }

val carSnapshot = getCarStateFlow(carId).map { it.toCarSnapshot() }

Homework

kotlinx.coroutines.flow

val myField

data class lock(carId)

● Reactive Programing

● Immutability

● Separate data and behaviour

● Monadic Error Handling kotlin.Result

How does all this relate to SOLID?

Single Responsibility

An object should only have a single responsibility, that is, only changes to one part of the software's
specification should be able to affect the specification of the object.

The compositional nature of functional programing will allow us to focus on one responsibility at a time.

A function converts the given input into the expected output

The lack of side-effects (or limiting them to the ends of our layered architecture) enforces the SRP.

A function calculates a value or generates a side effect, but not both.

Single Responsibility

val carSnapshot by viewModel.carSnapshot.collectAsState()
CarView(carSnapshot = carSnapshot)

val carSnapshot get() = getCarState(carId).map { it.toCarSnapshot() }

carStateFlow.emit(carCloud.getState(carId).toCarState())

Open Close Principle

"Software entities ... should be open for extension, but closed for modification."

class ViewModel(
 private val carId: String,
 private val getCarState: (String) -> CarState,
)

● High-Order Functions together with Dependency Injection allow us to extend without modifying.

● Reactive programming + immutability (Homework)

Liskov Substitution

An object (such as a class) and a sub-object (such as a class that extends the first class) must be
interchangeable without breaking the program

class ViewModel(
 private val carId: String,
 private val getCarState: (String) -> CarState,
)

● Avoid side-effects

class ViewModel(
 private val carId: String,
 private val getCarState: (String) -> Result<CarState>,
)

● Monadic error handling ● Immutability

Interface Segregation

Many client-specific interfaces are better than one general-purpose interface.

class ViewModel(
 private val carId: String,
 private val repository: Repository,
)

Thinking in terms of High-Order functions as dependencies ensures that the client only depend on what it

needs and not more.

class ViewModel(
 private val carId: String,
 private val getCarState: (String) -> CarState,
)

Dependency Inversion

High level modules should not depend on low level modules; both should depend on abstractions.
Abstractions should not depend on details. Details should depend upon abstractions

The abstraction is given by the High-Order functions.

The presentation layer consumes the HOF definition

The data layer will implement that definition

ViewModel(getCarState:(String) -> CarState)

repository::getCarState

The High-Order function definition (String) -> CarState is agnostic from both presentation and

data layers.

getCarState:(String) -> CarState

● OOP and FP can be “best-friends”

● You do not need to go functional all the way

● It can take some practice to break old routines

● FP composition is a real powerful tool

Closing notes

One final note

● There is a SpongeBob gif for everything

Questions?

About FP and Kotlin?

About working at Volvo?

About me?

